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Abstract

When the reproduction law of a discrete branching process preserving the total
size N of a population is ‘balanced’, scaling limits of the forward and backward
in time processes are known to be the Wright-Fisher diffusion and the

Kingman coalescent.

When the reproduction law is ‘unbalanced’, depending on extreme reproduction
events occurring either occasionally or systematically, then various forward
and backward jump processes, either in continuous time or in discrete time
arise as scaling limits in the large N limit. This is in sharp contrast with
diffusion limits, whose sample paths are continuous. We study some aspects of
these limiting jump processes both forward and backward, especially the
discrete-time ones. In the forward in time approach, because the absorbing
boundaries are not hit in finite time, the analysis of the models together with
the conclusions, which can be drawn deviate significantly from the ones

available in the diffusion context.
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1. Introduction

The discrete Wright-Fisher (WF) model for bi-allelic haploid dynamics
(and its diffusion limit) is at the heart of theoretical population genetics
(see [28], [5], [26], [12], and [10] for instance). It describes the temporal
evolution of the number of type 1 (allele 1) individuals in generation ¢
among a population of fixed size IV, subject to exchangeable reproduction
laws. When the reproduction law of individuals is ‘balanced’ in some
sense made precise, an appropriate space-time scaling gives rise in the
large N limit to the WF diffusion model. When looking at the genealogy of
this process backward in time, upon scaling time only, the Kingman
coalescent pops in, see [23]. The Wright-Fisher diffusion and the
Kingman coalescent in continuous time are dual processes in some sense.
The WF diffusion on the unit interval is a transient martingale, which

hits the boundaries {0, 1} in finite time. It belongs to a class of well-

studied one-dimensional absorbed diffusion process on an interval, see
[25]. In this one-dimensional diffusion context (possibly with additional
drifts killing the martingale property), it is of common use to study

various positive additive functionals a(x) of the process started at x, the

expected time to absorption being one of them. The Green function

g(x, ), which is the expected local time of the process at y given it
started at x is another one, which is the most important, as any a(x) can
be expressed in terms of an integral against g. It is also of interest to look

at, say, the WF diffusion process conditioned on its non-absorption (whose
limit law is the uniform Yaglom quasi-stationary distribution). Thanks to
known spectral information on the WF diffusion, this program can be
achieved, to a large extent. It makes use of the well-known fact that the
Kolmogorov backward and forward elliptic generators of the WF diffusion

have a purely discrete (atomic) spectrum.

Then some other questions pertaining to conditionings become relevant:
What 1s the WF diffusion conditioned on extinction or fixation, for
instance? or what is the WF diffusion conditioned on being killed when it

quits some state y for the last time? It turns out that the tool needed to



DIFFUSION VERSUS JUMP PROCESSES ARISING ... 87

formulate and understand these questions is the Doob transform, based
on various (super)-harmonic additive functionals o. The Doob transforms
allow to modify the sample paths x — y of the original process while

favouring large values of the ratio a(y)/a(x). The transformed process is

obtained from the original one while adding a drift term to it and while
possibly killing the drifted new diffusion at some additional killing rate.
It gives rise to a large number of questions of interest in population
genetics, such as the expected fixation time of a WF diffusion conditioned
on fixation or the age of a mutant currently observed at some frequency y,
or the Yaglom limits of the transformed process conditioned on its current
survival. To answer such questions, it is relevant to consider the
evaluation of additive functionals for the transformed process. We
develop and illustrate some of these ideas in the (WF) diffusion context

and we refer to [14] for additional examples and details.

When dealing with discrete (size N) Markov models with ‘unbalanced’
reproduction laws, the point of view turns out to be quite different. By
‘unbalanced’, we mean that one individual in the discrete model is
allowed to give birth to a ‘significant’ number of individuals among the N
possible ones of the next generation, the others adapting their
descendance so as to fulfill the global conservation of the total number N.
It turns out that there are two possible ‘unbalanced’ models with such
extreme reproduction events: One is occasional extreme events and the
other is systematic extreme events, when the very productive individual
produces a random fraction U of the whole population at each step. When
the reproduction law is ‘unbalanced’, depending on extreme reproduction
events occurring occasionally or systematically, then various forward and
backward jump processes, either in continuous time or in discrete time
arise as scaling limits in the large N limit. We give some details. When
running time backward, it was shown in [17] (developing some ideas first
discussed in [7]), that these limiting processes were continuous and

discrete-time A-coalescents [32], respectively. We give some additional

information on these processes, especially in the discrete-time case. All

scaled processes depend on the measure A.
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We will also consider the forward in time scaled jump processes on
the unit interval. Due to extreme events, the scaled processes are no
longer of diffusion kind with continuous sample paths, rather they are
jump processes on the interval. We shall mainly focus on the discrete-
time version (arising then when systematic extreme events occur). In this
latter case, we show that such processes are again transient, but that in
sharp contrast with the WF diffusion, the time to absorption occurs in
infinite time, with probability 1. There is indeed a positive probability
that this motion only makes move to the right or to the left, so that there
is a positive probability never to visit a neighbourhood of y starting from
any x inside the interval: Such processes are thus transient for any choice
of the measure A. They eventually end up their life at either boundaries.
The scaled forward process in discrete time depends on this measure A

in the following way: The very productive individual produces a random

fraction U of the whole population and the law of U is u_zA(du).

In the last section, we study in some detail the particular scaled
discrete-time forward process when U is assumed uniform. We call it the
special case and because of its ‘simplicity’, the analysis can be carried out.

We give its Kolmogorov backward Fredholm generator L and its adjoint

L*. Because, we deal here with a jump process, the generators are no
longer local second-order differential ones (as in the diffusion case),
rather they are integral Fredholm operators of a special singular kind.
We investigate some of their spectral properties. The operator L is not
compact and it has now a point spectrum, which is a whole closed sub-
disk of the unit disk. However, L leaves invariant some polynomials
associated to a discrete real subset of the point spectrum, akin to the
eigenvalues of the transition matrix of its associated discrete-time
limiting coalescent. As for its WF diffusion process counterpart, the Green
function is a key quantity to evaluate additive functionals of the new
process under study. We compute it and give some examples of
applications. Then, following the path borrowed in the WF diffusion
context, we investigate the questions of conditionings via Doob transform
in the context of the special process. Finally, we address the questions of
integrating drifts either due to mutation or selection, deviating thereby
from neutrality.
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2. The Wright-Fisher and Related Models

In this section, we briefly review some basic facts concerning the
Wright-Fisher (WF) diffusion as a scaling limit of ‘balanced’ reproduction

laws as the size of the population goes to infinity.
2.1. The neutral Wright-Fisher model

We first consider a discrete-time Galton-Watson branching process
preserving the total number of individuals at each generation. It can be
defined as follows. Start with a population of N individuals at generation

0. Each individual can then give birth to a random number &, of
individuals, n =1, ..., N, where the &s are mutually independent and
identically distributed (iid). Because a parent dies in the process of giving
birth, we can interpret the event &, = 0 as the death of individual n. In

order to fulfill the requirement that the population size remains constant
over time, we can assume a conditional Cannings reproduction law (see

[3], [4]), that is: The first-generation random offspring numbers is
v = (v, ..., vy ), whose law is obtained as v = (&1, ..., Ey | Z?‘;n =N),
while conditioning N iid random variables on summing to N (we will come
back later to the notion of a Cannings model for v while considering a

very different class). Subsequent iterations of this reproduction law are

applied independently. Would the &s be Poisson-distributed, for example,

regardless of their common means, v would have the joint exchangeable

polynomial distribution on the simplex [i| := N, where i = (kq, ..., ky)
I.NN
P - i) - N (1)
in!
n=1"

Let xt(N )(n) denote the offspring number of the n first individuals at

discrete generation ¢ € N corresponding to (say) allele A; or type 1

individuals. N — xt(N )(n) is therefore the offspring number at ¢ of the
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N -n type 2 original individualsl. xt(N )(n) is a discrete-time
homogeneous Markov chain on {0, ..., N} with transition probability

P(v; +...+v; = j), so when the &s are Poisson, with

N Ny . \N-j
Pee) = i1 i) = (5 (1-%)
J

The discrete Wright-Fisher process xlgN) clearly is a martingale with

absorbing states {0, N}, which are being hit in finite time with probability 1.

With B(N, p)gbin(N, p) a binomial random variable (r.v.), the

dynamics of xt(N ) is

t+1

(N)
x(N) = B[N, xtT} xéN) = n.

Let n =|Nx] for some x € (0,1). The dynamics of the continuous

space-time re-scaled process x{%t) | (|Nx])/ N, ¢t € R, can be approximated

for large N, to the leading term in N _1, by a Wright-Fisher-It6 diffusion
n [0, 1] driven by standard Brownian motion w, (the random genetic

drift)

dx; = Jx;1 - x;)dw;,  xq = x, 2)

where x; is the diffusion martingale approximation of the offspring

frequency at generation | Nt¢| (the integral part of Nt) when the initial

1 This model and its forthcoming Wright-Fisher scaling limit typically accounts for the
intrinsic temporal fluctuations of the one allele count or frequency in a simple bi-allelic
population. Recently, see [1], an interesting political interpretation of this model was given
in terms of the bi-partition of some population with respect to two political beliefs.
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frequency is x. In the scaling limit process, time ¢ is thus measured in

units of N. The global stopping time of x;(x) is 7, = T, o AT, 1, Where
Tx,0 1 the extinction time and T, ; is the fixation time of x, when the

process starts in x. The boundaries of x; are absorbing and they are hit in

finite time with probability 1.

This well-known result (see [10], for example), which is valid when

the reproduction law v is built from ¢&s, which are 1id Poisson

distributed, extends to a much larger class of v also obtained from

conditioning N iid discrete random variables & on summing to N. The
only difference is that the time scaling should be | N, | with N, = pN
instead of simply N, for some p > 0 with possibly p #1 (see [16] and

[15], Theorem 3.2). Note that these models for v are balanced in that
there is no individual, whose offspring number is statistically different
from the one of the others.

Let us now briefly mention some basic facts if one looks at this
process backward in time. The latter discrete space-time process can be
extended while assuming that ¢ € Z. Take then a sub-sample of size n

from [N]:= {1, ..., N} at generation 0. Identify two individuals from [n]

at each step, if they share a common ancestor one generation backward in
time. This defines an equivalence relation between two individuals from
[n]. Tt is of interest to study the induced ancestral backward count

~(N ~(N
process. Let then xE )=x,(5 )(n) count the number of ancestors at

(N)

generation ¢ € N, backward in time, starting from x o =n<N. This

backward counting process is again a discrete-time Markov chain (with

~(N
state-space {1, ..., N}), whose lower-triangular transition matrix PE j)

can easily be written down under our assumptions on v. The process

()

x ;  thus shrinks by random amounts till it hits 1, which is an absorbing

5)

state. Of particular interest in P, i is the coalescence probability
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cy = ﬁ(le) =1/ N,. It is the probability that two individuals chosen at

random from some generation have a common parent. The probability

SV)

dp =Py, that 3 individuals chosen at random from some generation

share a common parent is also relevant. For scaling limits N — oo,

whether ¢y — 0 or not and whether triple mergers are asymptotically
negligible compared to double ones (ZZ—N — 0) or not ((j—N -+ 0) is
N N

important, [33]. Under our assumptions on v, both ¢y — 0 and

d . .
=N 0, leading to the well-known conclusion that as N — «
CN

~(N) D A~ ~
Xirey| M>Xy xg=n, teR,,

where x ; 1s the continuous-time Kingman coalescent [23]. This process is

~

a Markov one with semi-infinite lower-triangular rate matrix: @; ; ; =

—%i(i—l), @i,i :%i(i—l), and @i,j =0 if j# {i-1,i}. The effective
population size N, :=1/cy fixes the time scale of the time-scaled

process o?t. For the Kingman coalescent tree, only binary collisions

(mergers) can occur and never simultaneously. Of interest, among other

things on this coalescent, are the time to most recent common ancestor:

'Fn,l =inf (teR, :x, =1|Xq=n), the length of the coalescent tree, the

number of collisions till $n,14.. (see [34] for the computation of the law of

these variables and various asymptotics as n — ).

The scaled continuous-time Wright-Fisher and Kingman processes
are well-known to be dual with respect to one another in the sense that
(see [30] and [14], for example)

E.(x')=E, (xgtj, for all (n, f)e N, xR,, x€][0,1]. )
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For instance, from the knowledge of the n-th moment of x; started at x,

one can obtain the probability generating function (pgf) E,, (xxtj of x ;
started at J?O =n.

2.2. Non-neutral cases

The neutral case accounts for the so-called random genetic ‘drift’. The
presence of additional evolutionary ‘forces’ results typically in adding to
the SDE (4) a true (non-random) drift. The two alleles Wright-Fisher
models (with non-null drifts) have binomial transition probabilities
bin(N, py)

N

P(xléf’l)(n) = k| xM(n) = k) - (k'](pN(%Dk(l _ pN(%))Nk’,

where
py(x):x€(0,1) = (0, 1),

is some state-dependent probability different from the identity x: This
continuous mapping accounts for a deterministic evolutionary drift from

allele A; to allele A, due to external evolutionary forces. For each ¢, we

thus have

B 00| ) = £) = Npw [,

o {2 V) = &) = Mo (1)1 - o5

and the martingale property is lost. xt(N)(n) is also amenable to a
diffusion approximation x; as the scaling limit of x{%t) J(n)/ N,teR,
under suitable conditions on pp(x).

(i) Take for instance py(x) = (1-7my y)x + m (1 - x), where

(my, 5, g, v ) are small (N-dependent) mutation probabilities from Ay to Ay
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(respectively, A; to Ay). Assuming (N -m; y, N -1y N)N—> (u1, ug),
’ ’ —>®
this leads after scaling to a Wright-Fisher diffusion model with an
additional drift: f(x) = u; — (u + ug )x, involving positive mutations
rates (uq, ug). Thus, the Wright-Fisher diffusion with mutations is
dx; = (ug — (ug + ug )x; )dt + \x,(1 — x; )dwy, xp = x.
(ii) Taking

(1+31,N)x
1+s8 yx+sy n(1-x)

py(x) =

where s;, N > 0 are small N-dependent selection parameter satisfying

N -s; N N—) o; > 0,1 =1, 2, leads, after scaling, to the WF model with
—w

selective logistic drift f(x) = ox(1 — x). Here o := 67 — 54 is the selective
advantage of allele A; over allele Ay. The drift term f(x) is a large N
approximation of the bias to neutrality: N(py(x)-x). The Wright-

Fisher diffusion with selection is

dx, = ox,(1—x,)dt + Jx,(1 - x, )dw,, (4)
with time ¢ measured in units of N.

Like the neutral Wright-Fisher diffusion, (4) has two absorbing
barriers. It tends to drift to the boundary {1} (respectively {0}), if allele
A; 1is selectively advantageous over Ay : o1 > oy (respectively, o; < 69)
:if 6 > 0 (respectively o < 0), the fixation probability at {1}, which is

known to be [21]

1 _ 6—2(7.’)6

Plrea <o) = ———»
x X 1_e—2(5

increases (decreases) with o taking larger (smaller) values.
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3. Diffusions on [0, 1]

From now on, we discuss some general facts about diffusion processes
on the unit interval, the Wright-Fisher diffusion process (either neutral
or with various drifts) being one of them that one should keep in the
background.

3.1. Kolmogorov backward equation

Let w; denote the standard Brownian motion. Consider the It6

diffusion process on [0, 1]
dxl = f(xt )dt + g(xt )dwt7 Xp =X € (Oa 1)7 (5)

where we assume g(0) = g(1) = 0 (see [25]). The Kolmogorov-backward

(KB) infinitesimal generator of (5) is
1
G = [(x)0x + 5 &°(x)0%.

The quantity w := u(x, t) = Ep(x;), ) satisfies Kolmogorov-backward
equation (KBE)
o,u =Gw); ulx, 0)=p(x). (6)

In the definition of u, t AT, := inf(¢, 7, ), where T, =T, g AT, is the

random time at which, the process should possibly be stopped, given the

process was started at x. 7, is thus the adapted absorption time,
governed by the type of boundaries, which {0, 1} are to x;. The KBE

equation may not have unique solutions, unless one specifies the

conditions at the boundaries {0, 1}. For 1-dimensional diffusions as in (5)
on [0, 1], the boundaries {0, 1} are of two types: Either accessible or

inaccessible. Accessible boundaries are either regular or exit boundaries,
whereas inaccessible boundaries are either entrance or natural
boundaries. Integrability criteria based on both the scale function and
the speed measure are essential in the classification of boundaries due to

Feller [11]. We now define these quantities.
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3.2. Scale function and speed measure

When dealing with such diffusion processes, one introduces the

G-harmonic coordinate ¢ € C?, i.e., satisfying G(¢) = 0. Itis

-2 dez x —2jy Mdz
2 2
oy)=e ¢°(?) 5 0 and o(x) = I e 0@ dy. 7

The function ¢ kills the drift f of x; in that: y, := ¢(x;) is a martingale

obeying the new drift-less stochastic differential equation (SDE)
dy, = (') 07 (00))dwr, o0 = ola).

Also of interest is the speed density: m(y) = 1/(g2(p’)(y). The speed

density m is in the kernel of the adjoint KB generator
*0y _ 1.2, 2
G ()_ _ay(f(y)')+§ay(g (y)')’ (8)

so G*(m) = 0.

Defining now the random time change: ¢t — 0,, with inverse: 6 — ¢

defined by 6; = 6 and

teN
e = JO gQ(ys)dS,

the time-changed process (wg := yy,; 0 2 0) is easily seen to coincide
with the standard Brownian motion. Both the scale function ¢(x) and the
speed measure du = m(y)-dy are thus essential ingredients to reduce
the original stochastic process x; to standard Brownian motion wg. The

KB infinitesimal generator G can be written in Feller form

-4 (4 )



DIFFUSION VERSUS JUMP PROCESSES ARISING ... 97

Examples (From population genetics). See [5], [26], [12], and [10].

e f(x)=0 and g2(x)=x(1-x). This is the neutral WF model

already encountered. Here, ¢(x) = x and m(y) = [y(1 — )]"}. The speed
measure is not integrable.

o With uy, ug > 0, f(x) = uy — (4 + ug)x and g%(x) = x(1 — x). This
is the WF diffusion with mutation rates u;, ug. The drift vanishes when

x = u; [ (ug + uy), which is an attracting point for the dynamics.

Here, ¢/(y) =y (1 -y) %2, o(x) = [y - y) *2dy, with
0(0) = —0 and ¢(1) = +o, if wuy, ug >1/2. The speed density
m(y) ey 711 - y)*271 is always integrable.

e With o € R, consider a diffusion process with quadratic logistic
drift f(x) = ox(1 — x) and local variance g2%(x) = x(1 — x). This is the WF
model with selection. Here, @(x)oc e 2% and m(y)oc [y(1 — y)] 1e?® is not

integrable. o is the selection or fitness differential parameter.

e The WF model with f(x) = ox(1 - x)+ 2 — (ug + ug )x and g%(x) =

x(1 - x) is WF model with mutations and selection parameters (u;, ug; ).
_ [* ,—20y,-214 —2uq .

Here, o(x) = I e y Q1 -y) dy. The speed density m(y)oc

y2a71(1 = y)?4271629 ig not integrable. O

3.3. Transition sub-probability density and Yaglom limits

Assume T, =T, o ATy < with probability one (the boundaries

are absorbing). Let f(x) and g(x) be differentiable in (0, 1). Let
p(x; t, y) stand for the transition probability density of Xipr, Aty given

xg = x. Then p := p(x; t, y) is the smallest solution to the Kolmogorov-

forward equation (KFE)
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op = G*(p), px; 0, ) = 8,(x), (10)
with G*(-), the adjoint of G, defined in (8).
The density p(x; ¢, y) is reversible with respect to the speed density
m in the sense that
m(x)p(x; t, y) = m(y)p(y; t, x), 0<x y<l, (11)
with m(y) satisfying G*(m) = 0. The speed measure is a Gibbs measure

1

e V) associated to the potential function
2%(y)

with density: m(y)oc

U(y) such that

U(y) = —Zjoy gfz(?z)) dz, 0<y<l,

dy

2

and the reference measure .
g (y)

Under our assumption on T,, p(x; ¢, ¥) is a sub-probability density,

losing mass at the boundaries. Let p;(x) : p(x; ¢, y)dy; then p;(x)

= foy
= P(1, > t) is the tail distribution of the stopping time T,. This quantity
obeys

9;pi(x) = G(py(x)), with pg(x) = 1(g,1)(x).
Whenever p(x; t, y) is a sub-probability, while normalizing, define

q(x; ¢, y) == p(x; ¢, ¥)/ ps(x), now with total mass 1 for each ¢. It holds
that

0,9 = =0,p (%) / py(x) - +G*(q), q(x; 0, ) = §,(x), (12)

where —0;p;(x)/p;(x) >0 is the time-dependent birth rate at which

mass should be created to compensate the loss of mass of the original

process due to absorption of x; at the boundaries.
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When the boundaries of x; are absorbing (and under our assumption

that g(0) = g(1) = 0), the spectra of -G and —G" are discrete or atomic:

There exist non-negative eigenvalues (X}, ),»; ordered in ascending sizes
and eigenvectors (v, uy, )ps; of both —G* and — G satisfying - G* (v ) =

Apvp and —G(yy ) = Agyuy. Note that Ay = 0. With (uy, v,) = .[(0 1)uk(x)
v(x)dx and by, = (u,, v,)", the spectral expansion of p(x; ¢, ) is

ples 8, 3) = Y bre My (x)y (). (13)
k22
Let X9 >X; =0 be the smallest non-null eigenvalue of the
infinitesimal generator —G* (and of —G). With b) := bgj(oyl)vz(y)dy,
using (13), we have

A ,
e tht(x)tjoo byug(x),

and therefore 7, is tail-equivalent to an exponential distribution with
rate Lg. The right-hand-side term in the latter limit has a natural
interpretation in terms of the propensity of x; to survive to its ultimate

fate of being absorbed (the so-called reproductive value in demography).
Note that p,(x) admits the expansion

pi(x) = D bre Huy, (x)I(o,1)vk (¥)dy,

k22

and that so does therefore the mean of T,

_ [~ _ -1
E(ty,) = IO py(x)dt = ];bk%k uk(x)J(O,l)Uk(y)dy- (14)

Clearly, - %log pt(x)t—> Ly and by L'Hospital rule therefore
—0
—0py(x)/ pt(x)t—> Ly. Putting 6,9 = 0 in the evolution equation (12) of
-

g, independently of the initial condition x
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q(x; ¢, y)tjw Qo () c v2(¥), (15)

with vy the eigenvector of — G* associated to Ay, satisfying — G*(vy) =

}\.202.
The limiting probability density q.(y) = vy(y)/ J 0 1)02 (y)dy is called

the Yaglom limit law of x; conditioned on being currently alive at time ¢.
Note that, due to the orthogonality relations between the v,s and the

Uurps

P, (1>1)= _f 1)qm(x)_f(0 1)p(x; t, y)dy = e 2. (16)

(0

Would the process x; be started with the Yaglom limit law q,, (the quasi-

stationary distribution), its absorption time 7 would be exactly
exponentially distributed with rate Ao.

Example. L? theory and the neutral Wright-Fisher diffusion.

The degree-k Gegenbauer polynomials constitute a system of
eigenfunctions for the KB operator G = %x(l -x)02  with the
eigenvalues A;, = k(k—1)/2, k >1, thus with —G(uy(x)) = Apup(x).
In particular, u(x) = x, ug(x) = x — x2, ug(x) = x — 3x2 + 2x3, uy(x) =
x — 6x2 +10x° — 5x4,

The eigenfunctions for the same eigenvalues of the KF operator

G*() = 1 02[y(1 - y) ] are given by vi(y) = m(y)- up(y), k = 1, where the

T2
Radon measure of weights m(y)dy is the speed measure:
m(y)dy = — D For instance, v;(y) = L, va(y) =1, vs(y) =1 -2y,
y(1-y) 1-y

vy(y) =1-5y+5y2, ...
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Although A; = 0 really constitutes an eigenvalue, only v;(y) is not a
polynomial. When % > 2, from their definition, the u;s and the vgs
polynomials satisfy vy (y) = m(y) - ug(y).

We note that, (vj, up) = (uj, ug),, =0 if j # k and so the system
up(x); k> 2 is a complete orthogonal set of eigenvectors. Therefore, for
any square-integrable function ¥(x) e Ly([0, 1], m(y)dy) admitting the

decomposition ¥(x) = Zk>20kuk (x) in the basis uy(x), & > 2
v(y)u m(y)d
B ug), j‘(o’l) ()ug (y)m(y)dy

E v(x;) =Y cpe *uy(x), where ¢, = =
2 R s

This series expansion solves KBE: 06,u = G(u); u(x, 0) = y(x), where
u=ulx,t):=E"(x,).2

Similarly, we have the series expansion of the transition probability

density

1

plx; e, y) = Zbkekatuk(x)vk(y), where b, = ,
= J ey

solving the KFE of the WF model. This transition density is clearly

reversible with respect to the speed density since for 0 < x, y <1

2 Whenever p(x) = x" is a degree-n polynomial, it can be uniquely decomposed on the n
first eigenpolynomials uy(x) and therefore E,(x}') = ZZ=2 Cke_xktuk (x) is exactly
known. Using the duality relationship (3) with Kingman coalescent x ¢» its pgf (and so its
law): En(xj?’f ) follows in principle. Considering [x] En(xj?t )=P,(x,=1), one obtains

the probability that the time to most recent common ancestor of x ; with x o =n occurred

before time .
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m(x)p(s; £, ¥) = m)p(y; £, ) = D bre ™ Hop(@)ve(y).
k22

The functions vy (y), k > 2 are not probability densities because vj(y) is

not even necessarily positive over [0, 1]. The decomposition of p is not a

mixture. We have (vg,, up) = |uy, ||§ ., the 2-norm for the weight function

m. We notice that (vy, u;) = I(O l)ﬁ dy = o so that ¢ =b; =0

although A; = 0 is indeed an eigenvalue, the above sums should be

started at k& = 2 (expressing the lack of an invariant measure for the WF
model as a result of explosion and mass loss of the density p at the
boundaries).

For the neutral Wright-Fisher diffusion, A9 =1 with vy = 1. The

Yaglom limit g (y) in this case is thus the uniform measure. O

3.4. Additive and multiplicative functionals along sample paths

Let x;, as from (5) on [0, 1], with both endpoints {0, 1} absorbing

(exit). This process is transient. We wish to evaluate non-negative
additive functionals of the type

a(x) = EUOTx c(xg)ds + d(x, )), 17

where the functions ¢ and d are both assumed non-negative. Thus,
a(x) > 0 in (0, 1) solves the Dirichlet problem

-G(a) = ¢, if x € (0, 1),

a=d,if x € {0, 1}.
Examples. (1) Let y € (0,1). Let a(x) = E(IOT’C 8,(xs)ds) be the
mean value of the local time [,(y) := J‘OTx 8,(xs)ds of x, at y, starting

from x. Then o = g(x, y) = I (:O p(x; s, y)ds is the Green function,

solution to
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-G(g) = 8,(x), if x € (0, 1),
g=0,if x € {0, 1}.
Following ([19], p. 198), with og(x) = P(1, o < 7,1) and ay(x)
=1-00(x)
g(x, y) = 200 (x)m(y) (e(y) - 9(0)), if 0 < y < x,
g(x, ¥) = 2a0(x)m(y) (o(1) - ¢(y)), if x < y <1. (18)
Note that indeed g vanishes at the boundaries: g(0, y) = g(1, y) = 0.

When dealing, for example, with the neutral WF diffusion

1-x X
alx, y) = 2m103y3x + 2§1x<y§1’

The Green function is useful to evaluate additive functionals a(x) such

as the ones appearing in (17): The integral operator with respect to the

Green kernel inverts the second order operator — G, leading to
) = [ o 3)elr)dy + d0) + (1) - dO) (19

Note that indeed, a = d if x € {0, 1}.

(2) If both {0,1} are exit boundaries, we wish to evaluate the
probability that x, first hits [0, 1] (say) at 1, given xy = x. Choose then
¢ =0 and d(x) = 1(x = 1). Then

o= ay(x) =P(t,1 < Tyo0)

a;(x) is a G-harmonic solution to G(o;) = 0, with boundary conditions

a1(0) = 0 and a4(1) = 1. From (19) and (7), we get

9 Yy f(z) dz 72J'y f(z) dz
e

_(P(x)_(P(O)_ ¥ - 0 ¢2(2 0 2,
R o el I PR
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Conversely, if ag(x) is a G-harmonic function with boundary conditions
a0(0) =1 and ag(1) = 0, then
Oto(x) = P(Tx,O < Tx,l) =1- 0Ll(x)'
(3) Assume ¢ =1 and d = 0 : here, a(x) = E(1, ) is the mean time of
absorption (average time spent in [0, 1] before absorption), solution to
-G(a) =1, if x € (0, 1),

a =0, if x € {0, 1}.

From (19), a(x) = g(x, y)dy, which is an alternative and much

Joun
simpler expression of a(x) = E(1, ) than the one displayed in (14) and

which does not requires the knowledge of the full spectra of both —G
and - G".

As an illustrative example, if x; is the WF diffusion, a(x) is easily

seen to take the well-known entropy-like form
a(x) = —2(x log x + (1 — x)log(l — x)).

(4) Also of interest are the additive functionals
Tx }\‘
ay(x) = E(J. e e(xg)ds + d(x, )j,
0 X

where ¢ and d are again non-negative. a;(x) > 0 solves the Dynkin

problem
(M -G)(ay) =c, if x € (0, 1),

oy, Zd, if x e {O, 1},

involving the action of the resolvent operator (LI — G)_1 on c.

Whenever c(x) = 8,(x), d = 0, then
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oy, = g (x, y) = EUOTx e_ksﬁy(xs)dSJ = IO e ™ p(x; s, y)ds,

is the A-potential function, solution to
(0 - G)(,) = 5, (x), if x = (0,1),
g, =0,1f x € {0, 1}.

The function g; is the mathematical expectation of the exponentially

damped local time at y, starting from x (the temporal Laplace transform

of the transition probability density from x to y at ¢), with go = g. Then

a (x) = f o 1)gx(x, y)e(y)dy + d(0) + (d(1) - d(0))x.

>

The A-potential function is useful in the computation of the law of the

first-passage time T, , to y starting from x. Consider indeed the

convolution formula
t
plx; t, y) = JOP(Tx,y e ds)p(y; t s, ).

Taking the temporal Laplace transform of both sides, we get the Laplace-
Stieltjes transform of the law of T, , as

B - 222

Putting & = 0, we have P(t, , <o) = 38’ ;; € (0, 1) as a result of both

terms in the ratio being finite and x, y belonging to the same transience
class of the process (under our assumptions that the boundaries are

absorbing).

(5) (Multiplicative functionals). Multiplicative functionals are useful

to evaluate the higher order moments of the additive functionals

IOTx c(xg)ds. Let indeed
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A[T® c(xg )ds
By (x) = E[e IO ],

be now a multiplicative Kac functional. It is known (see [19]) that B, (x)

now solves

= G(By.(x)) = re(x)By (x), B(0) =B, (1) = 1. 1)
It holds that

k
Brlo) =1+ > o),

k21

where a(x) = E((I;xc(xs )ds)k) are the k-moments of I;x c(xg)ds.

Taking successive derivatives of (21) with respect to A and putting

A = 0, one gets the recurrence for the moments
- G(ap(x)) = ke(x)op_q(x), &k =1.

Using the Green function g, with x = x

k
[ Toteir, x0)e) - dcy...dxy,

I=1

ap(x) = k!J.

0,17

giving an explicit expression of the moments.

If c(x) = 8,(x), B_y(x) is the Laplace-Stieltjes transform of the local

time [, (y) of x, aty, starting from x. In this case, we get

k
oy (x) = A j[o ] Lo, 03, ) dod
’ =1

= Rl g(x, y)alx, y)*7L.

Thus,

B M) 2 g _ el ) ,
(e ) 1+ 2g(y, ¥)
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and, upon inverting this Laplace transform, recalling P(’I‘x’ y < ©) =

alx, ¥)
a(y, ¥)’

P(l(y) e dt) = P(Tx,y = 0)3, + P(Txyy < ) g(yl, 3 o t/90y: ¥) gy,

Given 7, , < o, the local time [, (y) is exponentially distributed with
mean g(y, ¥) (see [29]). Without conditioning, the mean value of I, (y) is
g(x, y), with of course g(x, y) < g(y, »). O
3.5. Doob transformation of paths

Consider x; as in (5) with absorbing barriers. Let p := p(x; ¢, y) be
its transition probability density and let 7, be its absorbing time at the

boundaries.
Let a(x):= E(IOTx c(xs)ds +d(x; )) be a non-negative additive
functional solving
-G(a) = ¢, if x € (0, 1),
a=d,if x € {0, 1}.
Recall the functions ¢ and d are both chosen non-negative so that sois o
1s positive inside the unit interval (o 1is super-harmonic), possibly

vanishing at the boundaries. Define a new transformed stochastic

process, say X;, by its transition probability density

plx; t, y) = %p(x; t, y). (22)

In this construction of x; (relevant to a change of measure), sample

paths x — y of x; with large a(y)/ a(x) are favoured. This is a selection
of paths procedure due to Doob (see [6]). The KFE for p is: d;p = 6*(1_)),
with p(x; 0, y) = 8,(x) and G*(p) = a(y)G*(p / a(y)). The adjoint KBE

of the transformed process is
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G() = —— Gla(x) ).
o(x)

With o/(x) := do(x)/ dx and G() = o g20.() + G(),

G() = 2 Glo) +G() = =<+ GO). (23)

With f(x) = f(x)+ % g%(x) the modified drift, the novel time-homogeneous
SDE to consider is therefore

dit = F(Et )dt + g(ft )dwt’ EO =X € (07 1)7 (24)
possibly killed at rate §(x) := %(x) as soon as ¢ # 0.

Whenever X, is killed, it enters into a coffin state {0}.

Let T, be the new absorbing time at the boundaries of x;, started at

x, with T, = oo, if the boundaries are inaccessible to the new process ;.
Let T, 5 be the killing time of (X;; ¢ > 0) started at x (the hitting

time of 0), with 7, 5 = w0 if ¢ = 0.

Then 7, := T, AT, 5 is the novel stopping time of X; to consider. The
SDE for x;, together with its global stopping time T, characterize the

transformed process x;, with generator G.

For the new process x;, one may also wish to evaluate
a(x) = E U.O ¢(x,)ds + d(xT(x))].

This is an additive functional, where the functions ¢ and d are

themselves both non-negative. & is positive in (0,1). It solves the

Dirichlet problem
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-G@)=¢,if x € (0, 1),
a=d,if x € {0, 1}.
With g(x, y), the Green function of x;, we get

- 1 - ~ ~ -
00) = 4 ] 0 DRIy + 30 +(@0) - 3O @9)

A particular quantity of interest is the distribution of 7, itself. From (22),

we have
_ 1
P >t)= —I a x; t, y)dy,
(Tx ) oc(x) 0.1) (y)p( y) Y
and also from (13),

P > )= by B o))y

k22

In particular,

B = [ PG > e = s S I at 0)ay

k22

However, from (25) with ¢ =1 and d = 0, this complicate expression is

also more compactly
E(7) = = [ ol val)dy
oax) o) ’

which is easy to evaluate from the knowledge of g.

3.5.1. Normalizing and conditioning: Yaglom limits of the

transformed process

Consider the process G losing mass due either to absorption at the

boundaries and/or to killing. Let p,(x) := p(x; t, y)dy = P(7, > t)

I (0,1)
be the tail distribution of the full stopping time T,. Then,
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07y (%) = G(py(x)) = - 8(x)py (%) + G(p (x)), (26)
with p(x) = 1(,1)(x).

Introduce the conditional probability density: q(x; ¢, ) == p(x; t, y)
/ p¢(x), now with total mass 1. With g(x; 0, y) = 8,(x), ¢ obeys

0:q = —0;p(x)/ Py (x) - T + G*(q)

= (-0, (x)/ Py (x) — 8(»)) - 7 + G*(@).

Here, —0,p;(x)/p;(x) > 0 is again the rate at which mass should be
created to compensate the loss of mass of the process x; due to its
possible absorption at the boundaries and/or to its killing. With
by = sz(oyl)a(y)vz(y)dy, we now clearly have

ug(x)

a(x)

Aot—
e Qtpt(x)tjmbé

Again therefore; - %log [ (x)t—> Lo and by L’Hospital rule, —o,p;(x)/
—o

pi(x) > L9 (kg being again the smallest positive eigenvalue of —G).
Putting 9;q = 0 in the evolution equation of g, independently of the

initial condition x

q(x; t, ¥) = q0(y), (27)
t—o0
where g, (v) is the solution to
~G"(@w) = (g = 8(3)) - Gun 0r =G (@) = Dy - T

With vy the eigenvector of — G* associated to Ay, g,,(y) is of the product

form

.0 = a0/ [ | ase)dy 29
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because G*(-) = a(y)G*(- / a(y)) and vy is the stated eigenvector of —G*.

The limiting probability density g, = ovg / I © 1)oc(y)02 (y)dy is thus
the Yaglom limit law of x;, now conditioned on the event 7, > t.

3.5.2. Illustrative transformations of interest

(1) The case c¢ = 0: In this case, T, 5 = and so T, :=T,, the
absorption time for the process X, governed by the new SDE. Here
G = G. Assuming o solves —G(a)=0 if x €(0,1) with boundary
conditions a(0) =0 and a(l) =1 (respectively, a(0) =1 and a(l) = 0),
new process X; 1s x; conditioned on exit at x =1 (respectively, at

x = 0). In the first case, boundary 1 is exit, whereas 0 is entrance;

o = oy reads

ay(x) = o(x) - 9(0)
! o(1) - ¢(0)’
with new drift
Fe) = )+ E-0d),

In the second case, a(x) = ap(x) and boundary O is exit, whereas 1 is

entrance. Thus T, is just the exit time at x = 1 (respectively, at x = 0).
Let &(x) := E(7,). Then, &(x) solves — G(&) = 1, whose explicit solution

is (o) = 01 (x) or ao(x))
~ 1
W) = 555 ) 86 D)

in terms of g(x, y), the Green function of x;.

Examples. (i) Starting from the WF diffusion on [0, 1], these
constructions are important to understand the WF diffusion X;

conditioned on either extinction or fixation, adding an appropriate linear
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drift and avoiding killing. See [14], for the determination of the beta
Yaglom limits of the conditioned processes in these cases and the
corresponding expected fixation and extinction times, related to the

Kimura-Ohta formulae for the age of a mutant, using reversibility [13].
(i) Consider the WF model on [0, 1] with selection for which, with
ceR, f(x)=ox(1-x) and g2%(x)=x(1-x). Assume o solves
-G(a)=0 if xe(0,1) with o(0)=0 and ol)=1; then o (x)=
(1-e729%)/(1 - e 2%). The diffusion corresponding to (24) has new drift:
f(x) = ox(1 — x) coth (ox), independently of the sign of o. This is the

WF diffusion with selection conditioned on exit at {1}.

(i11)) Assume o now solves —G(a) =1 if x € (0,1) with boundary
conditions a(0) = a(l) = 0. Proceeding in this way, one selects sample
paths of x; with a large mean absorption time a(x) = E(t,). Sample

paths with large sojourn time in (0, 1) are favoured. We have

ax) = | o

where g(x, y) is the Green function (18). The boundaries of X; are both

a(x, y)dy,
1)

’

entrance, so T, = o and X; is not absorbed at the boundaries. The
stopping time T, of ¥, is just its killing time 7, ;. Let a(x) := E (Tx.0)-

Then, G(x) solves —G (@) = 1, @(0) = &(1) = 0, with explicit solution
ax) = LJ. g(x, y)o(y)dy.
a(x) J(0,1)

(iv) Assume a now solves —G(a) = 8,(x) if x € (0, 1) with boundary
conditions a(0) = a(1) = 0. Using this o, one selects sample paths of x;

with a large sojourn time density at y, recalling o(x) = g(x, y) =

E(J'(:xSy(xs)ds). The drift of %, is



DIFFUSION VERSUS JUMP PROCESSES ARISING ... 113

ap(x)

0
ag(x)

f@) = flx)+ g%(x)

,if y<x

- 1)+ 2 it 5 <,

%, is thus x; conditioned on exit at {1} if x < y and x; conditioned on

exit at {0} if x > y.

The stopping time T, (x) of ¥, occurs at rate 3,(x)/ g(x, y). It is a
killing time when the process met y at least once and is at y for the last
time before entering 0. Let d,(x):= ﬁ(?y(x)) Then, a,(x) solves

—~G(d) = 1, with explicit solution

1
T = Sy ] 0 05 Vel 2Nz

When x =1/ N, a1 / N) gives the age of a mutant currently observed
to the present frequency y.
As an illustrative example, if x; is the WF diffusion, G, (x) can easily

be found to be

~ _ 1-x _ y
ay(x) = 2(1+ . log(1 x)+1_ylogyj,

which, if x =1/ N, gives back the celebrated Kimura and Ohta formula:
G,/ N)=- z(

see [13].

1 3) 5 log y + O( % )], which can be obtained differently,

(v) Let A9 be the smallest non-null eigenvalue of G. Let o = ug
correspond to the second eigenvector: —G(ug) = Aoug, with boundary
conditions ug(0) = ug(1) = 0. Then c(c) = Aug(x). The KB generator

associated to x; is

G() =L Gla)-+G() = —ng -+ G(),

[0



114 THIERRY E. HUILLET

obtained while killing the sample paths of the process ¥; governed by G
at a constant death rate 8(x) = Ly. The transition probability density of

xX; 1s

Define B(x; ¢, y) = ¢*2D(x; t, y). This is the transition probability
density of X;, governed by 5, corresponding to the original process x;
conditioned on never hitting the boundaries {0,1} (the so-called

Q-process of x;).
The process X; is obtained from x; while adding the additional drift

term u—2g2 to the original drift f. The determination of o = uy is a
U

Sturm-Liouville problem. When ¢ is large, to the dominant order

o ups(y)
[ us@ea)dy
(0,1)

)

plx; t, y) ~ e ™2

where vy is the Yaglom limit law of (x;; ¢ > 0). Therefore,

oot u2_(.)})e—7\,2t us (x)vg(y) _ ug(y)va(y) '
W@ 0o [ e

) s

Dlx; ¢, y) ~

(29)
The limit law of the @-process X; is thus the normalized Hadamard
product of the eigenvectors us and vy, associated, respectively, to G
and G
Example. When dealing, for example, with the neutral Wright-
Fisher diffusion, it is known that L9 =1 with ug = x(1 — x) and vy = 1.
The limit law of the @-process X; in this case is 6y(1 — y), which is a
beta(2, 2) density. O
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4. Extreme Reproduction Events

So far, the forward scaling limits of the discrete space-time Markov
chains obtained as a conservative Galton-Watson branching process with
balanced reproduction laws, were of the diffusion type. We now discuss an
‘unbalanced’ case, where one individual is allowed to be very productive

compared to the other ones.

Assume again a random dynamical population model with non-
overlapping generations ¢ € Z and a constant population size N. That is,
starting with NN individuals at generation ¢ = 0, we assume that each

individual can die or give birth to a random number of descendants while
preserving the total number of individuals at the next generation.

Suppose the random reproduction law at generation 0 is v = (vq, ..., vy ),

therefore obeying the conservation law

N

Zun = N.

n=1

Here, v,, is the random number of offspring of the individual number n.
Iterate the reproduction law at each times. With [N]:= {1, ..., N},

tracing the number of offspring of a subset of individuals from [N] leads

to a conservative branching Galton-Watson process in (0 U [N ])Z first

introduced in [18]. If one adds the following assumptions:
(1) Exchangeability of v.

(2) Homogeneity: The reproduction laws are i.i.d. for each generation
t el

(3) Neutrality (no mutation, no selection,...), then we get a Cannings

process with reproduction law v on the N-simplex ([3], [4]).
4.1. The discrete extended Moran model

The extended Moran model is a special class of Cannings model
defined as follows ([17]):
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Consider a population of N individuals. Let M > 1 be an r.v. taking
values in {2, ..., N} and define the offspring vector p := (yy, ..., py ) via
W =Mp,u, =0 for ne{2,..., My} and p, =1 for ne {Mpy +1,
..., N}.n,, is the number of descendants at generation O of the n-th

individual. Consider the exchangeable Cannings reproduction model

v =(vq, ..., vy ) obtained as a random permutation of p. For such a
model for v, one individual taken at random from [N] is allowed to
produce a (possibly) large number M of descendants, the other ones
fitting their descendance, either 0 or 1, to guarantee the total number
conservation.

This allows to define two Markov chains.

e Forward in time. Take a sub-sample of n < N individuals and let
xt(N )(n) denote the number of descendants of these n out of N individuals,
t generations forward in time. Then xlgN) with x(()N) = n, is a discrete-
time Markov chain (with state-space {0, ..., N} and absorbing barriers
{0, N}), whose transition probabilities Pl(]\]] ) = P(xt(ivl) =] xt(N ) = i) are

given by (see [[17], page 2, (1)])

[((N-Mpy\ My -1
1 e e
Pifz;]): NE { ﬂ,lf]<z,

i i j 1—J

[(N-My) (N-My
piffj‘f) - +[ ﬂ,ifj:i, (30)

1
E
HV_)_ i N-i

[((N-Mpy\ My -1
1 o s .
Pifz;]): N E { ﬂ,lf]>z.

i I\ N—-j j—i

For My = 2, this model reduces to the standard Moran model [28] with
forward transition probabilities Pl(l_)l =i(N-i)/(N(N -1)),iefl,...,N},

P = i(N - i) /(N(N -1)), i € {0, .., N -1}, PN =1 - 2i(N - i)/

i,i+1 > T
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. N .
(N(N -1)),1€{0, ..., N}, and pi(,j) =0, otherwise. In the Moran

model, two individuals are chosen at random; one is bound to generate 2
offspring, while the other one dies out. The rest of the population
generates one offspring.

Allowing My > 2 random and possibly of order N, the extended

Moran model provides the opportunity that one individual is very
productive compared to the other ones, who either survive or die in the

next generation. Note that under our assumption My > 2, M is the

largest of the vs : M = max(vy, ..., vy ).

e Backward in time. Take a sub-sample of size n from [N] at
generation 0. Identify two individuals from [n] at each step, if they share

a common ancestor one generation backward in time. This defines an

equivalence relation between two genes from [n]. Define the induced

ancestral backward process as:

A;(n) € £,, = {equivalence relations on [n] = [N]}, t € N, backward in time.

The ancestral process is a discrete-time-f Markov chain with transition

probability
P (A ()=l A () =) =Bl with (@ PeE, ach
where, with (n); = n(n -1)...(n - j +1), and
J =|of = the number of equivalence classes of «;
i = |B| = the number of equivalence classes of B;
ij := (i, ..., ij) the clusters (blocks) sizes of f;

the transition probability reads

Poa=Pi (i))- (N)] E{H( Z)LZJ
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2 _ )
t

Let ¥, " = (n) count the number of ancestors at generation ¢ € N,

. . . ~(N ~(N
backward in time, starting from xg ) =n < N. Then, xi ) also counts

~(N
the number of blocks of A4, (n), xi ) - | A4 (n)|. This backward counting
process is a discrete-time Markov chain with state-space {0, ..., N} and

transition probability

N N il B (i)
P[50 )= ity Teill)

e =17 Y T A A
i, 1jeNy
0+ =l

When the reproduction law v is the one of an extended Moran model, for
i, jefl, ..., N}, (see [[17], page 2])

N ) o)
R
s _° KN _iMN) i [N ; —]‘fNﬂ
(0

() o
Pi,j =0, if j>i.

,1f j<i,

JAf =1, (31

~(N
Both matrices P®Y) and P( ) can be shown to be similar and so they

~

N
share the same eigenvalues: thus PE i) in (31) are also the eigenvalues of

pWN),

Note that P ) =E[(My ); ]/ (N),,i€{2,..., N} is the probability

(N
i1
that ¢ individuals chosen at random from some generation share a

. . ~(N
common parent. In particular, the coalescence probability is cp = P(2 1) =



DIFFUSION VERSUS JUMP PROCESSES ARISING ... 119
E[(My ), ]/(N(N-1), in agreement with [7]. cy is the probability
that two individuals chosen at random from some generation have a
common parent. The effective population size N, :=1/cp is a relevant

~(N
quantity. Introduce also the probability dp = Pg 1) that 3 individuals

chosen at random from some generation share a common parent. For

scaling limits, whether c¢)y — 0 or not and whether triple mergers are
. .. dn

asymptotically negligible compared to double ones (c_ — 0) or not
N

(d—N - 0) is important, [33].
CN

4.2. Scaling. Depending on whether

(i) (Occasional extreme events): My /N i)O (convergence 1in

distribution as N — o) or

(i) (Systematic extreme events): My / N 4Lu (as N = o), where U
is a non-degenerate [0, 1]-valued r.v. with E(U) > 0, different scaling

processes both forward and backward in time can arise in the large N

population limit.
4.2.1. Occasional extreme events. Let us first discuss the case (i).

e Backward in time. In this first case (1), if in addition, the limits

— lim E[(My),]
o(k) = ]\1]_>Oo Nk_ZE[(MN N ,

(32)

exist for all %k € {2, 3, ...}, then the extended Moran model is in the

domain of attraction of a continuous-time A-coalescent X;, with A a

probability measure on [0, 1] uniquely determined by its moments:

1
Iouk_‘?/\(du) = ¢(k) (see [17], page 3). A-coalescents allow for multiple,
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but no simultaneous collisions (see [32] for a precise definition). All
continuous-time A-coalescents can be produced as such a limiting
extended Moran process. They are obtained from the discrete-time

~(N
xg ) of Subsection 4.1 as

,\(N) D ~ ~
Ylerey) M2 Xo=n, teR,,

where (see [17], page 5)
N
j-1

N-1
1/cy = Z[ Jj: uN (1 - ) T A(dw).
=1

The limiting process A-coalescent Qt is integral-valued at all

(continuous) times and non-increasing (it is a pure death process). It has

1 as an absorbing state. It has transition rate matrix @w, which 1s a

lower tri-diagonal semi-infinite matrix with non-null entries

oo AW ,
Q; j :(jilj.[oul_]_l (-uf™ Aduw), if 2<j<i, (33)
o -1 o
Qii=-Y Qi =-Q, (34)
=1

where @; =1/ ¢; is the total death rate of 3ACt starting from state i. When

A({0}) = 0 (excluding the Kingman coalescent), its dynamics when

started at n is given by DACO =n and

X, -Xx, =
t 70~

_I(O,t]x(o’l](B( X, ,u )—1B(§S_’u)>oj/\/’(ds><du)

—j (B(%, ,u)-1), N (dsxdu). (35)
(O,t]x(O,l] -
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Here, x, = max(x, 0), N/ is a random Poisson measure on [0, «) x (0, 1]

with intensity ds x %A(du) and B(Qs_, u)g bin (QS_, u) is a
u

binomial r.v. with parameters ( X s » U). As aresult, with

r(y) = J.(O’l](uy -1+ -u) )u%A(du), y >0, (36)

upon taking the expectation in (35), it holds that
E(d%,|%,_)=-r(%,_)d:.

From this, the quantity r(y) is the rate at which size y blocks are being

lost as time passes by. Note that r is also

-1

il ~ 0 ] 1 .. .
r(i)=i6; _ZjQi,j = (i—j)(. : JJ. W A—u T Ady).  (37)
Jj=1 1 J=190

=
Consequently, the reciprocal function 1/r(y) of the rate r interprets

as the expected time spent by ;Ct in a state with y lineages and therefore

x)= 1 .
y22nr(y) 1 will give the expected time to the most recent common

ancestor

$n,1 :=inf(teR+:3ACt =1|3ACO:n),

In some cases, the latter sum can be estimated by JAfO:nr (y)71 dy; it
will give the (large-n) order of magnitude of the expected time to the most
recent common ancestor. Similarly, one expects that '.-fo:n yr (y)_1 dy
will give the order of magnitude of the expected length of the coalescent,

Pt~
which is the additive functional L, :Ejon’lxs ds and more generally
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X =
that Il 07" »r (y)_1 dy will give the order of magnitude of the additive

?n =R
functional E f o ! c( ¥, )ds. In other words, with r given either by (36) or

by (37), the Green function of the continuous-time A-coalescent X ;18

-1
g(x, ¥) =r(y)" lyefp, . x=n) X ¥ €1{2,3, ..

There are lots of detailed studies in the literature on the length of the

A-coalescent, the length of its external branch, the number of collisions
till time to most recent common ancestor, .... Famous examples include

A-coalescents for which:

* (Lebesgue) A(du) = 1jp 1j(w)du : This is the Bolthausen-Sznitman
coalescent. In this case, u 2A(du) is not integrable.

* A(du) = B2 - o, a)u' (1 - u)* g 1)(w)du, (o € (0, 1)U (1, 2)), with
B(a, b) the beta function; this is the beta(a) coalescent. In this case,

u"2A(du) is not integrable either.

* A(du) = B(a, bu® (1 - u)b_ll[oyl](u)du: We get the beta(a, b)
coalescent. In this case, usz(du) is integrable only if a > 2. O

e Forward in time. Let us now briefly look at the scaling limits

forward in time. In case (1), the coalescence probability cp tends to O and

the space-time scaled forward process x;, as a scaling limit of
x{f\/]gNJ(LNxJ)/ N with xy = x and ¢ € R,, is a well-defined (two-types
neutral A-Fleming-Viot) continuous-time Markov process with state-

space [0, 1] (see [2], [9]). More precisely, x;, has backward infinitesimal

generator



DIFFUSION VERSUS JUMP PROCESSES ARISING ... 123

0 < C2([0.1]) - G () = MW o1~ yaZuie)

1
+ J.[O’l]\{o}[xw(x +1-x)u)+ 1 -x)px1-u)- w(x)]u_2 Aldu),

which is the one of a pure jump process if A has no atom at {0}, so with
u(x, t) = E p(x; ) obeying o,u = G(u); u(x, 0) = p(x).

Equivalently, the sample-paths of x; obey the stochastic evolution

Xt — X0 = J‘t\/A({O})xs(l - xs)dws
0

' J.(O,t]x(O,l]x[0,1](1vﬁxs— u(l =2 ) = Tosy, s )N(ds x du x dv), (38)

where N is a random Poisson measure on [0, ©)x (0, 1]x [0, 1] with
intensity dsx%A(du)xdv, independent of the standard Brownian
u

motion w;. If A(0) # 0 term accounting for the Wright-Fisher diffusion
has to be included. In (38), the clock-time ¢ is measured in units of

N, = c]_vl.

Example. The Eldon and Wakeley model, [7]. Let y > 0. Take for

M py, the following mixture model:
My = 2 with probability 1 - N™¥ (Moran model),
My =2+ |(N - 2)V | with probability N7,

where Vis an r.v. on [0, 1] with distribution a(du). The law of My itself
is

ndu) = (1= N7V )y + N7 -8y # L((N - 2)V]),
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leading to occasional extreme reproduction events, with probability N7,

with clearly My /N i> 0. In [7], the law of V is a Dirac mass at some

v € (0,1). For all y > 0, one can check that ¢y e 0. The larger the
-0

values of y, the smaller the contribution of extreme events. By computing

o . dy .
the limiting behaviour (N — =) of =2 in each case, one can conclude
CN

e If y > 2 : We are in the attraction basin of the Kingman coalescent

( f—N — 0), [23]. So, no jump process in the scaling limit of the forward
N

process, only the Wright-Fisher diffusion.

o If y<2: We are not in the attraction basin of the Kingman
coalescent ((:—N -+ 0), rather of the full A-coalescent. So, here a jump
N

process in the scaling limit of the forward process, to which a Wright-

Fisher diffusion term should be superposed if = has mass at 0. O

4.2.2. Systematic extreme events. Let us now investigate the case (ii).

)

e Backward in time. In the second case (ii), ﬁg >E(U')>0 and
the extended Moran model is in the domain of attraction of a discrete-
time A-coalescent with A(du) = u?n(du) and n(du) the probability
distribution of U, [17]. Here extreme events are not occasional, but
systematic because M, 1is a random fraction of N. In particular, the

coalescence probability cp tends to a limit ¢ = E(U2) > 0. It holds that
~(N A
(xg ), teN)g(xt, teN),

which 1s a discrete-time ¢ limiting A-coalescent, whose transition matrix

~ 00
P is a lower tri-diagonal semi-infinite stochastic matrix with non-null

entries (see (9) and Theorem 2.1 of [27])
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00

1 1 .. .
P j =(.l JJ. W 1 —wy T r(du), if 1<) <, (39)
J— 0
~ 0 1 1
Pi,i:J‘ L—w)f ™ (L=t iw)n (du), if =i (40)
0

The corresponding discrete-time dynamics of X ; 1s easily seen to be

~

X =% —(B(¥, Uy )_1)lB(§t’Ut+1)>1, Yo =mn,

where B( Qt, u) 2 bin ( %t, ©) is a binomial r.v. with parameters
(%, 1),
From the expressions (39) and (40), it hold that
E(§t+1|§t )_@ :_"(gt ),
where, with U :=1-U.
r(y) = yEU) -1+ E(Uy), y >0,

involving the Laplace-Stieltjes transform E(ﬁx) of - log(ﬁ). The
function r(y) is convex with r'(0) = E(U)+ E(log l_]) <0, r(y)=0, if
y>1 and r(y) ~ yE(U) as y — o. It is the discrete-time analogue to

the rate r function defined in the continuous-time setting.

Of interest also on this discrete-time coalescent, are the time to most

recent common ancestor: ?n ;=inf (teN: % =1| §0 =n), the length of
T ~
the coalescent tree L, :Zt:"él X,, the number of internal nodes, the

number of collisions till '?n Loeen

Example. It is not so clear which model n for the law of U is
meaningful in population genetics. However, a special ‘canonical’ case of

interest is when = is uniform on [0, 1]. One can then check the simple

expression
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5% 1 . L. ~o0 2
Pi,jzm,1f1£1<z andPi’i:i+_1' (41)

0

e Forward in time. Whatever n really is, the space-scaled forward
process xt(N)(LNxJ)/ N with x(()N) = x has a well-defined scaling limit,
which is a discrete-time-t Markov process x; with state-space [0, 1],

defined as follows. Let (U;, V;),5; be two mutually independent random

sequences with respective common laws: Uj g7t(0lu) = %A(du) and
u

Vi 2 uniform on [0, 1]. If = has no atom at {0}, then x, is the Markov
chain (with state-space [0, 1]) driven by (U, V; ),5;
21 = % + Upn (U= 2)1(Vir < ) = Upno U(Vig > x); 29 = . (42)

So, depending on the current state of the process and independently, V;,;
allows to decide whether x; moves up or down and then U;,; governs the

amplitude of the jump.

Example. If My =2+ M), where M} 1is binomially distributed

with parameters N -2 and p € (0,1), then My /NiU ~ 3, and
cN > p? (relevant for case (ii)). Note that p = pny may depend on N
with py — 0 (relevant for case (i)). In the latter case, this model can
have a wide variety of effective population sizes N, =1/ pZZV. For
instance, if py =N % o >0, then N, = N2* is sub-linear for
o <1/2 and super-linear for o >1/2. If py =AY, A <1, then
N, = A2y grows exponentially. O

When A(du) is not reduced to 8, both limiting space-scaled forward

models (35) and (42) account for jump processes on the unit interval,

either with time continuous or discrete, contrasting with the standard
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Wright-Fisher diffusion, whose sample-paths are continuous. When
dealing with populations with a very productive individual (either
occasional or systematic extreme events), the Latin principle of natural
philosophy ‘Natura non facit saltus’ breaks down. When dealing with

extreme reproduction events, it is not even possible to scale time.

5. Forward Process Associated to the
Discrete A-Coalescent

We now study some properties of the discrete-time forward process

defined in (42). Let (U, V;),5; be two mutually independent random

sequences with respective common laws: U; gTc(alu) = %A(du) and
u

Vi 2 uniform on [0, 1]. We shall assume that n is absolutely continuous
with density f so that, in particular, it has no atom at {0}. We also
assume that {u : f(u) > 0} (0, 1), (U has full support). Consider then
the Markov chain (with state-space [0, 1]) driven by (Uy, V; )5,

X1 = % + Upn (1= 21V < 24) = Upax 1V > 5, ); % = x.

From this model, if at some (discrete) time ¢, the process x; has got close
to say 1, there is a big chance (x;) that in the next step, it will even get

closer to 1 by a small move, but there is always some small probability
(1 — x;) that the process can move back abruptly in the bulk of the state-

space (by a big move of amplitude —U, 1x;) in which case the whole

process starts afresh. By symmetry, a similar argument can be applied
when the particle happens to be very close to 0. A rare jump will drive it

back at some point inside the state-space, closer to 1 then. The process x;
can be either recurrent or transient on [0, 1] and we would like to fix
what it is.

A question maybe important for that purpose is how large is the jump
that brings the particle back inside at resetting time?
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One could think that would the probability mass of U be concentrated
‘close to 1’ (U large), the amplitude —U;,1x; of the rare resetting jump
from x; (already close to 1) is relatively large, so that the particle would

sample again the whole interval in this case, leading maybe to a

recurrent process x;. On the other hand, if U is large, x; can first move

fast to the boundary 1 making it harder to escape in the future, and

whenever it escapes, then x; will be trapped near 0 with difficulties to

escape O then.

Would U be too small (with probability mass concentrated near 0) at
resetting time, the particle would still remain too close to 1 after the
resetting, thereby ruining the global chance of a real mixing or here of

positive-recurrence of x;.

In fact, we will see latter that whatever the size of the jump at the

resetting time (whatever the law of U), the process x; is always transient:

There is a positive probability not to ever visit a neighbourhood of a point

y # x, when xg = x.
Before that, let us first investigate some immediate properties of x;.
First, we have E(x;|x; =x)=x+EU; ;1)1 -x)x - E(U;q )x
(1-x) = x andso x, is a martingale. As for the variance: 6%(x;,1 | ¥, = x)

= 6%(U,,;)(1 - x)x. Clearly also, would x, be transient (and it is), it will
eventually hit the boundaries either {0} or {1}, but not in finite time, so

that 7, = 7, o ATy 1 1s © with probability 1. Both boundaries are clearly

absorbing. From the martingale property, x; will eventually hit first the

boundary {0} (respectively, {1}) with probability 1 — x (respectively, x).

Let v € Cy([0, 1]). With ¢ > 1, we have

u(x, 1) = Egp(x;) = (L) (x),  ulx, 0) = v(x),

where the backward generator L is given by
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(Ly)(x) = Eyp(x)
1 1
= xj v(x + (1 - x)u)f(w)du + (1 - x)'[ v(x — xu)f(w)du. (43)
0 0

From the expression (39), it is clear that if y(x) = x* is a monomial,

(Lv)(x) remains a degree k polynomial because [x**1](Lyp)(x) = 0. More

precisely, we easily get

k-1

(Lv) (x) = le{ JE [oF 11 - )] [k ) (L) ().

k
=1 -1
Here, from (39), [ ' ](Lv) (x) = 13201 and
[x*](Lv) (x) = E[1 - U} (1 - U + kU],

which, from (40), coincide with the eigenvalues I/—\’fk of P”. From these

facts, it is clear that there exist degree-k eigenpolynomials uj(x) to the
eigenvalue equations: (Al — L)u;, =0 with X, = Pi.. Except in the
special case 132’ k =2/(k+1) corresponding to U uniform, we were not
able to compute them in detail.

Clearly, with a and b real numbers, if ¥(x) = a + bx, (Ly) (x) = v(x),

showing that the affine functions a + bx are the harmonic functions of L,

as required for a martingale.

The operator L as in (43) also takes the form

o)) = 5 (2 iy + 12 [ A3 oy,

X x \1l-x
observing that with probability 1 — x (the event V| > x), x; = x(1-Uy)

has range [0, x) and law given by the image measure of U; = x —xxl ,

while with probability x (the event V; < x), x; = x + U;(1 — x) has range
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2 B . Under the

(x, 1] and law given by the image measure of U; =

latter form, the operator L turns out to be an integral Fredholm operator
[24] with kernel

K(x, y) = l;xf(x;yjl(o <y< x)+1fxf(%jl(x <y <1),(45)

. 1 .
that is; (Ly)(x) = IO K(x, y)v(y)dy. This operator acts on the Banach

space of continuous (and so bounded) functions C;([0,1]) and it is

bounded with norm ||L| = Supjy| -1 |Ly|,, =1. Because L is associated to

a stochastic kernel, (L1)(x) = 1 and so the spectral radius of L is also one.

The forward generator L, which is the adjoint of L, acts on the space

of positive Radon measures and it is easily seen to be given by

En0) - [ 72 (32 e [ 12 (2w o)

1-z z
The operator L is not self-adjoint, nor is it normal.

As a result of the expression of L, the density p(x; ¢, y) of x, aty

(started at xy = x) obeys the Fokker-Planck equation (¢ > 1)

| [Pz (272 RELHEETIFN
ples 1, ) = [T E (32 bl e+ [ 22 A2 ot )

= (L*p(x; ¢, ) ().

When ¢ = 0, with p(x; 0, -) = 8,.(")

o1 9) = [ A2 o+ [ 12 (252 foateres

0l-z z

- “Txf(%juy <x)+ g fx f(%jl(y > x),
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is the density of x; given x; = x, which is the kernel K(x, y). Because

L™ maps a Dirac measure into a density, there exists a (speed) measure

u with density m satisfying (L") (y) = p with m obeying

m) = [ 2 (e [ 12 (2w an

Note that the process x; is not reversible with respect to the speed

measure m(y)dy

m(x)p(x; 1, y) = m(y)p(y; 1, x).
The expression of K(x, y) is useful for the following statement, which

shows that in fact x; is always transient.

Let I(x) be the probability that the particle always moves to the left
(towards 0) starting from x :I(x)=P(...<x9 <x; <xp =x). Then
I(x) <1 obeys the functional equation

i) =25 [ (22 i

X

where in the right-hand-side, I(y) is the same probability when the
process is started from y < x after the first jump to the left of x. Clearly,
I(x) <1-x. We look for the largest non-null solution to this functional

equation. The question is: Is I(x) > 0?

Assume E(-1log(1-U;)) <. Let T, =inf(t > 1:x,,1 > x;|x9 = x)
be the first time of a jump to the right given the process started at x. With

k > 0, we have

P(T, >x+1)=P(V} >x, Vo > aly, ..., Vi1 > xU; - Uy)

_a —x)E{H(l —xT, T, )].
k=1
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Developing the product, with A; := E(ﬁll) / E(ﬁll_l ), the ratio of
consecutive moments of U;

P(Tx>m+1):(1—x)i(—1)kxk Z ﬁx’;l.
k=1

1<ny <...<np<k [=1

Clearly, I(x)=lim, ,, P(T, >x+1)=(1- x)E(H:=1(1 —xU, ---Uy,))

and the question is if a nonzero limit exists. Let W), := Uj ---Uj,. Almost

surely (a.s.), we have W, — 0 and by the Strong law of large numbers:
Wé/k 5 ¢ E(logln) ¢ (0, 1) (a.s.). Thus, the series W}, is a.s. convergent,
with

K

R

W, — 8§,
K—>00
k=1

where S:Z§:1(71"'Uk is a non-degenerate limiting r.v. obeying:

sd 171(1 +8’) with S’ s a copy of S, independent of U;. Note that the

moments m,, := E(S™) of S can recursively be computed with mg =1,

—n n-1(n
m, = EUl_ Z m;, nz=1.
1-EU" )=\

X

and

For all x e (0, U;), we have e ™ <1-x < e, where % > 1 is defined

a.s. by 1- e_}‘U1 = (71 Therefore, for all x € (0, 1), the infinite product

giving [(x) can be bounded above and below with I(x) < 1, (x) := (1 - x)

E(e %) and, with S’ 25 a copy of S, independent of U;

) > 1) = (1 - x)E(e‘“Uﬂ“Zkzszsz
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—(1-2)E (e—x( ~log(U) >~(1+S'>))‘
We have —log(U;) >1-U; a.s. and therefore —log(U;)-(1+S') > Uy
1+39) dg. By the monotonicity of the expectation, for all x € (0, 1)
L(x) = (1 - 0)E[e =280 SD) (o) = 1 - )E(e™S).

Besides, both E(e™°) and E(e_x(_log(U1 )'(“S’))) belong to (0,1) as
x € (0, 1) because they are the Laplace-Stieltjes transforms of positive

random variables evaluated at x. This shows that 0 < 7_(x) < I(x) <, (x)<1

for all U; e (0, 1) satisfying E(-log U;) < .

So, under the latter assumption on Uy, there is a non trivial positive

probability solution I(x), with, as required, I(x) - 1 as x — 0.

Whenever E(-1logU;) = « (which entails E(1/U;) = « and so U;
very close to 1), S = 0 and /(x) = 1 — x corresponding to the probability
of the first jump being to the left, where the process is instantaneously
brought very close to the 0 boundary, where it remains stuck.

Similarly, the probability r(x) = P(x = xp < x; < x9 < ...) that the

particle always moves to the right starting from x obeys

) = 15 [ (35 poar

Proceeding as for /(x), the formal solution is

r(x) = xE[H(l -1-x)T, -.-ﬁk)J,
k=1

so rx)=I11-x)>0. With r(x)= xE(ef(l*x)(*lOg(U1 )'(HS/))) and
r.(x) = xE(e_(l_x)S ), we therefore have 0 < r_(x) < r(x) < r.(x) <1 for

all Uy € (0, 1) satisfying E(-logU;) < «© and r(x) »> 1 as x — 1.
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We conclude from this that when E(-logU;) < o, x, is transient
because for all y # x, there is a positive probability that x; started at
Xp = x never visits a neighbourhood of y. This probability turns out to be
larger than I(x) > 0 (respectively, r(x) > 0), if ¥ is to the right (to the
left) of x.

Remarks. (i) When the law of U is atomic, then things in a way turn

out to be simpler; assume, for instance, that the law of U is concentrated
on some ¥ € (0, 1). Then, the functional equation giving I(x) can easily

be put under the form
1) = (- ) 1 28, (d2) = (- 2 - 0)

whose solution (with ¥ =1 —y), is formally the infinite product
I(x)=(1- x)H(l - xﬁk).
k>1

Ax X

For all x € (0, ¥), we have e <1-x < e, where A > 1 is defined by

1-e™ =%, Therefore, for all x e (0,1), the infinite product is
convergent with

(1 _ x)efx(*logw/w) — (1 _ x)efxxﬁ/w < l(x) < (1 _ x)efxﬁ/w’

showing that 1> I(x) > 0 for all y € (0,1); clearly I(x) —» 0" for all
x € (0,1), as v — 0*. Clearly also, xe (1=*)(-log v/v) < r(x) < xe (=007 /v
are bounds for the probability r(x) of all moves to the right.

When U is atomic at y, the process x; is thus also transient.

(i1) When U is uniformly distributed on [0, 1], the functional equation

1-x
X

giving I(x) simply is: I(x) = J';Cl(y)dy. It has an exact solution

B 1
x(l-x

obtained while integrating: '(x) = ( j o1 ;le(x) with boundary

conditions /(0) = 1. One finds I(x) = (1 — x)e ™ .
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6. The Special Transient Case (U Uniform)

We limit ourselves in the following study to the discrete-time
canonical case, where U is uniformly distributed. The limiting discrete

A-coalescent is thus characterized by (41), whereas, the limiting forward

process obeys the discrete-time dynamics (42), so with U d n(du) = du.

6.1. The model and its main properties

If we limit ourselves to the case n(du) = du (U; is also uniform on

[0, 1] with f =1), then

(L0)@) = Bsle) = 5 [Tty 725 [on. @9

which is (Ly) (x) = I;K(x, v)¥(y)dy, where

X
1-x

K(x,y)zl_Txl(OSyﬁx)Jr 1(x <y <1). (49)

Clearly, the kernel K is not totally positive (see [31]), for instance,

because

K(x1, 1) K(x1, yg2)
det

K(xg, y1)  K(xg, y2)
with x; < x9 and y; < y9 is not always positive: K does not either

possess the nice spectral properties of totally positive kernels.
We note that K(x, y) is singular in the sense that it is neither

bounded nor continuous, on [0, 1]2, nor does it fulfill -[[0 1P K(x, y)zdx

dy < . Due to the divergence near the boundaries of K, the operator L
can easily be checked not to be compact and not even quasi-compact. So K
is a singular kernel, which is not reminiscent of the classical (say Hilbert-
Schmidt) Fredholm theory for integral operators, [20], [24]. In the special

case, with ¢t > 1, we also have
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st y) = (L) p(e: 0, )) (), plx: 0, 2) = 8,(z),

with p(x; 1, y) = (L"p(x; 0, -)) (y) given by
* Y oz 11-¢ )
(L'p(x: 0. )(0) = [ 755 plas 0, 2)dz + [ 2= plxs 0, 2)dz
0l-2z y 2

=1_x1(y£x)+ ad

. T 1(y > x). (50)

If the particle is originally at x <1/2(x > 1/2), the probability density
of a further move to the left (to the right) is (1 -x)/x (respectively,
x/(1-x)) with 1-x)/x >x/(1-x) (respectively, x /(1 -x) > (1 -x)
/ x); the process x, is stochastically monotone. If initially x( is uniform,
then at step 1, x; has density —log(y(1 — y)) — 1, diverging symmetrically
at both ends, logarithmically.

The probability /(x) that the particle always moves to the left starting

from x obeys the functional equation
1 _ X
lx) = = [ i),
X 0

whose solution is I(x) = (1 — x)e™*. Similarly, the probability r(x) that
the particle always moves to the right starting from x is by symmetry

r(x) = xe 1),

6.2. Resolvent and spectral aspects of the special model

Let

(10)() = Bt(e) = 225 [Tom)ar o 15 e

Let L eC. Let ¢ be a bounded function on [0,1] satisfying
c(0) = ¢(1) = 0. We look for continuous solutions o to the Fredholm

problem: (\I — L)o. = ¢ or, with z = "L, to
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(I -zL)a = zc. (51)

When |z| <1, o takes the converging Liouville-Neumann power-series

form

al) = 30 ),

n>0

involving iterates of L.

Let A(x) = I;Coc(y)dy so that a = A'.(I - zL)a = zc is also the linear

differential system

(x) - 1__1 )_ x _
Ax) zA(x)(x - xj _ z(c(x) + 2 A(1)j = 2f(x).
Let Ag(x) be the solution of the homogeneous system: Ag(x) — zAqy(x)
(l - Lj = 0. With C some constant, we get
x 1-x

Ap(x) = Clx(1 - x))°.
Applying the method of variation of the constant, let A(x) = K(x)Aq(x).

Then, K'(x) = Z}; ((3;)) , leading to

K() = G [ 000y + K/ 2)

X
1-x

Therefore, with f(x) = ¢(x) + A1),

A = 2= [ 60 Ty 470~ A /2, 52)

1
-Xx

alx) = zA(x)(% - )+ 2 (x). (53)
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e Assume first || < 1.
Looking at the behaviour near 0 and 1 of A(x) and then of a(x), we

find

AW gy 5o AR E 7 1 47x7a 2),

2
Ve —(2— _ _
a(x) - 57— AW (2-2)y2-1 | 24227141 2);

and

A(x)ﬁl A1) (-2 -x)*)+4°1 -x)*A(1/2),

afx) %, 2AM)2°(1 - X o471 - x)r A/ 2).

The solution o is continuous at 0 and 1 only if A(1/2)= A(1) = 0.
Therefore, when |z| < 1, the solution a is unique and takes the simple

form
ale) = z(@) + 220~ 20) (- 2) T (U= ) Te)dy, (54)
1/2

which may be viewed an alternative representation to the Liouville-

Neumann power series. Recalling A = 271, the domain ‘Nl‘ <1 is the
complementary of the unit disk of C centered at 0. Such As are regular
points of L for which (A — L)} exists, is bounded and is defined on the
whole space Cy([0, 1]).

e Assume now Re(z) > 1 and ¢ = 0.

When Re(z) =1 and ¢ = 0, we already know that a(x) = a + bx are
the harmonic function solutions.

Then, from (52)-(53) with Re(z) > 1 and ¢ = 0,
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A) = 20 02 [ 5007y 471 - 07 A0 2),

a(x) = zA(x) (% - ﬁj tz7 fx A1),

and one expects, by symmetry, that a(x) = ta(l - x).

The behaviours near 0 and 1 of a(x) are found to be

2
a(x) 7o 1[ 5 A2 ) 247 A0/ z)} 2 > Re(z) > 1,

a(x) xA(l)[ 22_22 + ZJ ; xz-l(— S AR + 247 A z)); Re(z) > 2,

oc(x)xﬁ(l — x)HzA(1)27 - 247 A(1/2));  Re(z) > 1.

When 2 > Re(z) > 1, assuming a(x) = —a(l — x) forces the coefficients of

x*71((1 = x)*1) of the behaviours of a(x) near 0 and 1 to be opposite,

which is possible only if A(1) = 0. In this case,

ofx)oc (1 - 2x) (x(1 — )7 7T, (55)

which are indeed anti-symmetric continuous solutions. These solutions

are eigenstates of L associated to the eigenvalues A = 2L Maybe there

are other symmetric solutions.

When Re(z) > 2, necessarily the leading coefficients of x from the

behaviour of a(x) near 0 is 0, forcing again A(1) = 0. In this case,
ax) (1 - 2x) (x(1 — x))*"! are again anti-symmetric continuous solutions.
A similar conclusion is obtained when Re(z) = 2.

We conclude that when Re(z) > 1, there are continuous solutions o

(eigenstates) to (I —zL)a = 0, defined up to a multiplicative constant.

Recalling A = z7!, we get that the closed disk of C centered at (1/2, 0)
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with radius 1/2 (which is: Re(?fl) > 1) constitutes the point spectrum of

L. When A belongs to the latter disk with radius 1/2, (Al — L) does
not exist. Because there is a continuum of eigenvalues in the latter disk,
the corresponding neutral Fleming-Viot model has no spectral gap. The
points A belonging to the complementary of the latter disk to the unit
disk centered at O constitute the continuous spectrum, where (AI — L)_1
exists, but is not defined on the whole space Cy([0, 1]): The operator

Al — L 1s not surjective.
e Assume finally z = 1 and ¢ not identically 0.

X

Ao,

Then, (52)-(53), with f(x) = c(x) +

Al) = -0 | -7 )y + 4x0-2)40/2),

1-x

a() = A@)( L - 1)+ @)

= =29 (0 - ey + A0 (ax 1)

+4AQ1/2)(1 - 2x) + c(x), (56)

where the constants A(1/2) and A(1) should be determined from the

imposed values a(0) and (1) of o at the boundaries. a(x) in (56) solves
~(L-DNa=c, if x €(0,1); o =d,if x €{0,1}, (57)

and so o can be interpreted as the additive functional

a(x) = E,{Zc(xt )+ d(x., )}.

t>0
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Examples. (i) Let ¢ > 0, smalland I, = (¢, 1—¢). Let ¢(y) = 1(y € I,)
and suppose the initial condition x belongs to the interval I.. Then o(x)
represents the expected time till x; first exits out of the interval I,

starting from x within the interval. Using (56), we find

X
1-x

a(x) = (1 - 2x)log +A1)(4x -1)+4A(1/2) Q1 -2x) +1.

Putting a(e) = a(l — ¢) = 0 fixes the constants and we finally find

X
1-x

€
1-¢’

a(x) = (1 - 2x)log - (1 -2¢)log

which is of order —loge, with a symmetric initial condition dependent

correcting term (1 — 2x) log %, which is maximal when x =1/ 2.

(i) (Green function). Let y € (0,1) and Is(y) =[y -8, y + 8] be an
interval of width 25, where 8 was chosen small enough in such a way
that I5(y) < (0, 1). Let x e (0, 1) but not to I5(y). Let c,(2) = 1(z € I
(¥)) and d = 0. Then a(x)=: af,(,)(x) represents the expected sojourn
time spent by x; in the interval Ig(y), starting from x outside this
interval. We look for solutions of a with boundary conditions a(0) = a(1)
= 0 translating that {0, 1} are absorbing states, so that if xq € {0, 1}, x;
will never visit I5(y). We first look for an expression of a(x) =: g(x, y)
when ¢(z) = §,(2), satisfying the same boundary conditions. Using (56)

with
H(x) = j :/2(2(1 — )5, (2)dz,

we find o(x) = (1-2x)H(x)- H(0)+ (H(0)+ H(1))x. After some easy

computations pertaining to y <x or y >x, and recalling m(y) =

(y(1 - ¥))™!, we find the Green function o(x) = g(x, y) as
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glx, y) = m(y)(1 - x), if y <x,
a(x, y) = m(y)x, if y > x.
Therefore, the expected time spent by x; in I5(y), starting from
x ¢ Is(y) is
0zs(y)(®) = jls(y)g(x, z)dz.
More generally, the solution to (57) is

o) = [ otz 9)ex)dy + d(0) + (@) - O},

where g(x, y) is the Green kernel just defined satisfying g(0, y) = g(1, y) = 0.
O

6.3. Eigenpolynomials

Recalling

(19) () = Bolon) = 225 [ "oy + 125 [ o),

let p(x) = x* be a monomial of degree k > 1. We have

(Lv) (x) = k1+1 (x 4.+ x"71 4 2,

and the action of L on x* does not change the degree of the polynomial

image. Thus, there are polynomials uj(x) of degree k such that, with

AM=2/(k+1),k>1

(ApI — L)uy, = 0. (58)
These values of A are particular (real and rational) values of the point
spectrum of L [note that A = ﬁi’fk coincide with the diagonal terms of

~ 00

P’
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When £ is odd, one can check that u;(x) = x and
wup(x) = (1 - 2¢) (x(@ - 2) V2 k>3 (59)
with u; anti-symmetric: uy(x) = —up(1 — x). Note that u; is a special
incarnation of (55) when z = A1 = (k +1)/2.

When £ is even, (55) with z = A™! = (k+1)/2 is not a polynomial
solution of (58). There exist other solutions us, which are symmetric

(up(x) = up(1 — x)) polynomials, namely,

p-1
tgp () = (1= %)Y " (ag,p + by p(x1 - x))?), p>1. (60)
g=1
Here, (aq,p, bq,p)q=1,...,p constitute some sequences of real numbers,

which can be computed recursively by iterated Euclidean division of uq »

by x(1 — x).

These polynomials all satisfy uz(0)=up(1)=0 for £k >1.

For instance

ui(x) = x, ug(x) = x(1 — x), ug(x) = (1 - 2x)x(1 - x),
wgl) = x(1 - x) (- £ 4 2L~ ), wg) = (1 - 20) (L - ),

ug(x) = x(1 —x)[x(l - x)(—%Jr 2l -x)) -4 :16}’

u7(x) = (1 - 2x) (x(1 — x))> are the seven first eigenpolynomials.

For all y € Cy([0, 1]) vanishing at {0, 1}, with y(x) = zl>1clul(x) the

development of y along the complete set of polynomials u;

(L)) = Beote) = 3 127 e o)

1>1



144 THIERRY E. HUILLET

We also note that the functions vy (y) = (y(1 - y))_(k+1)/ 2 are eigenstates

of the operator L' associated to the eigenvalues Aj, = 2/(k+1), k >1:

(L'vg ) () = Mg (v). In particular, vi(y) = (1 - »))™" = m(y), the speed

measure density.

Examples. (i) From this, we easily get the dynamics of heterozygosity

t
E,(2x,(1 -x;)) = 2(%) x(1 — x), which tends to 0 exponentially fast as

[ —> o
(ii) Observing (2x,(1 - x,))? = 4(uy(x; )+ %uz(xt)), the variance of

heterozygosity is found to be

% (25,(1 1)) = 4By g (1) + g | - 4E [, )P

= 4x(1 - x){% (%)t + (x(l —x)— %) (%)t -x(1- x)(%j%}

It starts at ¢ =1 from

2 ) = ax(-x)| L -2
62(2x,(1 - x1)) = 4x(1 x)[ -2 x)} >0,
where it is not maximal (62(2x4(1 - x9)) > 62(2x;(1-x;))) and then
decays exponentially at rate 2/3 when ¢ — «. The fluctuations start
growing and then there is an intermediate time #, > 1 at which they

reach a maximum, before decaying to 0. Similar conclusions can be found
in the context of Wright-Fisher diffusions, [26].

(i11) In particular also, if y(x) = x* and x" = Zzzlck,nuk(x)’ then

(o)) = Bel) = Y (527 e (o)

n
k=1

Defining by duality the integral-valued process X, by
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E,(x')=E, (xxtj,for all (n,t)eN,, x¢€]0,1], (61)

we obtain the pgf E, (xx‘j of % started at 320 =n. Proceeding as in [30]

p. 65, [dealing with the well-known duality between Kingman coalescent

and the Wright-Fisher diffusion], using martingale arguments &t 1s seen
to be precisely the limiting discrete-time A-coalescent with =n = uA
uniform on [0, 1](A(du) = u?du). (61) is clearly already true for ¢ = 1,

using (41) and the above expression of (Ly)(x) when y = x™3.

In particular,
x
R, (x| <[ B, (27),

is the probability that 9A5t =1 (starting from X o =n) or else that the time

to most recent common ancestor T, ; of ¥, is < ¢. More generally,

S : (2 Y :
P, (¥ =i)=[«"|E, (5 )= D |77 hn [ ] ().
kzz;(k+1) k k
Noting that [x]uy(x) = 0 if kis odd > 5 ([x]uy(x) = [x]us(x) = 1), only the
<t)=P, (¥, =1)=[x]

even terms essentially contribute to P("A'n1

. t
E, (%) and the tailof T, ; decays like (%) . O

6.4. Two conditionings

(1) Proceeding as for the Wright-Fisher diffusion, it is clear that the
new process with the modified kernel

plx; 1, y) = pi(x; 1, y) = %p(x; 1, y),

3 This duality relationship is not limited to the special case. It carries over to the cases,

where the density of U is not uniform.
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corresponds to (42) conditioned on exit eventually at 1 (ultimate fixation

of allele A;). Note that p; is of the Doob-transform type Zg; p(x; 1, y),

where o(x) = x is a harmonic function of L giving the probability that

the original process x; hits first the boundary {1} before {0} given xq = x.

Let us call the new process with kernel p; say x;. Its corresponding

backward generator 1s

(L0) () = Bon(®) = 25 [ yulo)dy +
X 0

1
1 E p Ix y¥(y)dy. (62)

Note that (L1)(x) = 1, so L is a true stochastic kernel (no mass loss nor

creation). In particular, the mean is

~ 1-x (% o 1 14 1
E (%) = I d+—J' dy = = (2x +1).
(%) ) ) v 3 ( )

So X; presents an additional drift, which is E, (X} ) - x = %(1 - x).
Similarly, the process with the modified kernel

_ 1-
p(x; 1, y) = polx; 1, y) = ﬁp(x; L ),

corresponds to (42) conditioned on exit eventually at 0 (ultimate

extinction of allele A;). This process presents an additional drift, which is

- %x, pushing x; towards 0.

(i) Recall the eigenvector ug of L associated to the eigenvalue
Ao =2/83 is uy = x(1 —x). Consider a new process with the modified

kernel

p(x; 1, y) = bla; 1, ) = 23 Hp(x; 1, y).
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Let us call again the new process X;. Its corresponding backward
generator is
-1

-1 .y
0@ = Bain) = 5 [ - apy s 22 | -2

One can check that (L1)(x) =1, so L is again a true stochastic kernel

(no mass loss nor creation). It corresponds to (42) conditioned on never

hitting neither {0} or {1}, even at ¢ = o (the so-called @-process of x;).

In particular, the mean is (y(y) = )

o)) = E) = 55+ 5)

So X, presents an additional stabilizing drift towards 1/2, which is

—

E (% )-x= (§_x)'

N

The limit law m of X; obeys (E*m)(y) = m(y), where

(Lm)(y) = 23hy(1 - y) U Y mlx)dr j j m(;“;dx }

0 (1-x)

One gets m(y)oc(y(l—y))_l/z, which is an integrable beta(%,

)

N~

density (the Arcsine law), suggesting that X; is positive-recurrent.

6.5. Doob transforms

The example (i) is a particular Doob transform making use of the

harmonic function a(x) = x of L. Let a > 0 solve (57)
—(L-1a =c,

for some bounded c¢. If ¢ > 0(c < 0) on (0, 1), a is called super-harmonic

(sub-harmonic). It is harmonic if ¢ = 0. With L the backward generator of

x;, define the generator of some new process x; as
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(Lv) (x) = —— L(ow) (x).

ax)
Note that the time iterates are obtained as (ftw)(x) = ﬁ L ow) (x).
We have (L1)(x) -1 = ﬁL(a)(x)—l = —c/a =), with \(x)] < 1.
Therefore,
(Zv) () = (Lo) @) + 1) v,
where

(o)) = (1 = (T1) (0))o(x) + (Tv) (x)
=)+ L [ a0 600 ~ o)y + s [ o) 60 - el

is the backward generator of some new stochastic process ¥;, noting that
(£1)(x) = 1.

Depending on whether A(x) > 0(X < 0) on (0, 1), which is obtained

when o 1s sub-harmonic (super-harmonic), the multiplicative term

v — Mx)-v accounts either for (binary) branching or for killing of X,
inside (0, 1), with probability +A(x), respectively. Therefore, X, may be
viewed as X; with additional branching or killing inside the state-space.

Note that L = L when ¢ = 0 (in the harmonic case).

Whenever ¢ has no specific sign on (0, 1), x;, may be viewed as %,
with both binary branching and killing. Because [A(x)| <1, one can
uniquely write: A(x) = po(x)— po(x), where py(x) interprets as the
probability that the particle splits at x, po(x) that it is killed at x,

po(x) + po(x) = 1.
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The kernel K(x, y) associated to the process with backward

generator L is obtained from the substitution (K as in (49))

K(x, y) = px: 1 y) > K(x, y) = Bl 1, y) = %pm 1, ).

_ _ _ 1
It allows to define the adjoint L* of L as: (L*m)(y) = JOK(x, y)m(x)dx.

In this selection of paths construction of x; through a change of

measure, sample paths x — y of x; with large a(y)/ a(x) are favoured.

6.6. Deviation from neutrality (drifts)

Consider the discrete-time Markovian dynamics with x; = x and

driven by (Uy, V; )51

Xt+1 = p(xt )+ Ut+1(1 - p(xt ))1(Vt+1 < Xy ) - Ut+1p(xt )1(Vt+1 > Xy ). (63)

Here x — p(x) is an invertible non-decreasing mapping from [0, 1] to an
interval I c [0, 1]. Once the choice (governed by V) to move to the left or
to the right is made (based on the current frequency x;) the amplitude of
the jump (governed by U) applies not to x;, but to a (small) deformation
p(x; ) translating that some external shift (such as mutation or selection)
occurred in the mean time. From these drift effects, x; is no longer a

martingale
B |3 = %) = pl) + 3 (L= (@) = 5 p(&) (1 - %) = 5 (6 + plx).
As for the variance: 6%(x;.1 | %, = x) = 62(Upyy) [(1 —x)x + (p(x) - x) ]

The backward generator associated to (63) is

X L (y-plx)
(L)) = =5 | ) (x)f(—l - p(x)jwmdy
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1-x (PO (p(x)-y
A le P e

The corresponding forward generator L*, which is the adjoint of L, acts

on the space of positive Radon measures and it is easily seen to be given
by

e - [ s (22D

1-p(z) " \1-p(z)
Loo1-z (pz)-y
e (2 e (64

When f =1 (U uniform) as in the special case,

z 1 1-=z
e+ j iy 5 w(dz).

1-

-1 )
="

In this latter case, clearly, there exists a (speed) measure p with density

m satisfying (L*u)(y) = u with m obeying the functional equation

m'(y) = pl(y)'[p_l(y) _1- p_l(y)jm(pl(y))-

1-y y
Let us look at the classical examples.
Small mutations. Take p(x) = n;(1 — x) + (1 - ©g )x, where (n;, ny)
are very small (N-dependent) mutation probabilities from Ay to A;
(respectively, A; to Ay). Let © := n; + mg <1. Then

1
1-n’

-y YT 1) =
prW=g—> p0)

Approximating m(p~t(y)) by m(y) to leading order leads to the speed

measure density, defined up to a multiplicative constant: m(y)ocy *
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(1- )", where o = 7™ ~ 11 9m + 1y and ay = 2T <14
2 2
(1-m) 1-m)

219 + 1. Both exponents of m are smaller than -1 and so m is not an
integrable beta density (the jump process x; with mutations is not
ergodic). The a;s are increasing functions of the n;s and so increasing
mutation probabilities puts more probability mass of x; to the endpoints,

which looks counter-intuitive. However, one can perhaps understand this

as follows: Whenever x; has got close to say 1, mutations tend to push x;
inside the interval and so to attenuate the amplitude — U, 1x; of the rare
resetting jump from x;, whose large size, at the end, would have been

chiefly responsible of positive recurrence.

Small selection. Take p(x) = (1 +s;)x /(1 + syx + s9(1 — x)), where
(s1, s9) are small (IN-dependent) fitness parameters of A; (respectively,
Ag). Let s = s, —s9 > 0 corresponding to a small fitness advantage of

A; over Ay;. We have
p(x) ~ x + sx(1 — x),
and
)~ y-289%  pl) ~1-4sy.

To the dominant order in s, this leads to the speed measure density,

defined up to a multiplicative constant
mly)or — (1 = ) el
y(1-y)

It is biased to the right (allele A; is eventually favoured) and not

integrable.
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